3.3.10 \(\int \frac {(1-a^2 x^2)^2 \tanh ^{-1}(a x)^2}{x^3} \, dx\) [210]

Optimal. Leaf size=162 \[ -\frac {a \tanh ^{-1}(a x)}{x}+a^3 x \tanh ^{-1}(a x)-\frac {\tanh ^{-1}(a x)^2}{2 x^2}+\frac {1}{2} a^4 x^2 \tanh ^{-1}(a x)^2-4 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )+a^2 \log (x)+2 a^2 \tanh ^{-1}(a x) \text {PolyLog}\left (2,1-\frac {2}{1-a x}\right )-2 a^2 \tanh ^{-1}(a x) \text {PolyLog}\left (2,-1+\frac {2}{1-a x}\right )-a^2 \text {PolyLog}\left (3,1-\frac {2}{1-a x}\right )+a^2 \text {PolyLog}\left (3,-1+\frac {2}{1-a x}\right ) \]

[Out]

-a*arctanh(a*x)/x+a^3*x*arctanh(a*x)-1/2*arctanh(a*x)^2/x^2+1/2*a^4*x^2*arctanh(a*x)^2+4*a^2*arctanh(a*x)^2*ar
ctanh(-1+2/(-a*x+1))+a^2*ln(x)+2*a^2*arctanh(a*x)*polylog(2,1-2/(-a*x+1))-2*a^2*arctanh(a*x)*polylog(2,-1+2/(-
a*x+1))-a^2*polylog(3,1-2/(-a*x+1))+a^2*polylog(3,-1+2/(-a*x+1))

________________________________________________________________________________________

Rubi [A]
time = 0.32, antiderivative size = 162, normalized size of antiderivative = 1.00, number of steps used = 21, number of rules used = 15, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.682, Rules used = {6159, 6037, 6129, 272, 36, 29, 31, 6095, 6033, 6199, 6205, 6745, 6127, 6021, 266} \begin {gather*} \frac {1}{2} a^4 x^2 \tanh ^{-1}(a x)^2+a^3 x \tanh ^{-1}(a x)-a^2 \text {Li}_3\left (1-\frac {2}{1-a x}\right )+a^2 \text {Li}_3\left (\frac {2}{1-a x}-1\right )+2 a^2 \text {Li}_2\left (1-\frac {2}{1-a x}\right ) \tanh ^{-1}(a x)-2 a^2 \text {Li}_2\left (\frac {2}{1-a x}-1\right ) \tanh ^{-1}(a x)+a^2 \log (x)-4 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )-\frac {\tanh ^{-1}(a x)^2}{2 x^2}-\frac {a \tanh ^{-1}(a x)}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((1 - a^2*x^2)^2*ArcTanh[a*x]^2)/x^3,x]

[Out]

-((a*ArcTanh[a*x])/x) + a^3*x*ArcTanh[a*x] - ArcTanh[a*x]^2/(2*x^2) + (a^4*x^2*ArcTanh[a*x]^2)/2 - 4*a^2*ArcTa
nh[a*x]^2*ArcTanh[1 - 2/(1 - a*x)] + a^2*Log[x] + 2*a^2*ArcTanh[a*x]*PolyLog[2, 1 - 2/(1 - a*x)] - 2*a^2*ArcTa
nh[a*x]*PolyLog[2, -1 + 2/(1 - a*x)] - a^2*PolyLog[3, 1 - 2/(1 - a*x)] + a^2*PolyLog[3, -1 + 2/(1 - a*x)]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 6021

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcTanh[c*x^n])^p, x] - Dist[b
*c*n*p, Int[x^n*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p
, 0] && (EqQ[n, 1] || EqQ[p, 1])

Rule 6033

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)/(x_), x_Symbol] :> Simp[2*(a + b*ArcTanh[c*x])^p*ArcTanh[1 - 2/(1
 - c*x)], x] - Dist[2*b*c*p, Int[(a + b*ArcTanh[c*x])^(p - 1)*(ArcTanh[1 - 2/(1 - c*x)]/(1 - c^2*x^2)), x], x]
 /; FreeQ[{a, b, c}, x] && IGtQ[p, 1]

Rule 6037

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcTanh[c*
x^n])^p/(m + 1)), x] - Dist[b*c*n*(p/(m + 1)), Int[x^(m + n)*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))
), x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -1
]

Rule 6095

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c*x])^(p
 + 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]

Rule 6127

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[f^2
/e, Int[(f*x)^(m - 2)*(a + b*ArcTanh[c*x])^p, x], x] - Dist[d*(f^2/e), Int[(f*x)^(m - 2)*((a + b*ArcTanh[c*x])
^p/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1]

Rule 6129

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/d
, Int[(f*x)^m*(a + b*ArcTanh[c*x])^p, x], x] - Dist[e/(d*f^2), Int[(f*x)^(m + 2)*((a + b*ArcTanh[c*x])^p/(d +
e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1]

Rule 6159

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Int[E
xpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[
c^2*d + e, 0] && IGtQ[p, 0] && IGtQ[q, 1]

Rule 6199

Int[(ArcTanh[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/2, Int[
Log[1 + u]*((a + b*ArcTanh[c*x])^p/(d + e*x^2)), x], x] - Dist[1/2, Int[Log[1 - u]*((a + b*ArcTanh[c*x])^p/(d
+ e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c*x
))^2, 0]

Rule 6205

Int[(Log[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(a + b*ArcT
anh[c*x])^p)*(PolyLog[2, 1 - u]/(2*c*d)), x] + Dist[b*(p/2), Int[(a + b*ArcTanh[c*x])^(p - 1)*(PolyLog[2, 1 -
u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1
- 2/(1 - c*x))^2, 0]

Rule 6745

Int[(u_)*PolyLog[n_, v_], x_Symbol] :> With[{w = DerivativeDivides[v, u*v, x]}, Simp[w*PolyLog[n + 1, v], x] /
;  !FalseQ[w]] /; FreeQ[n, x]

Rubi steps

\begin {align*} \int \frac {\left (1-a^2 x^2\right )^2 \tanh ^{-1}(a x)^2}{x^3} \, dx &=\int \left (\frac {\tanh ^{-1}(a x)^2}{x^3}-\frac {2 a^2 \tanh ^{-1}(a x)^2}{x}+a^4 x \tanh ^{-1}(a x)^2\right ) \, dx\\ &=-\left (\left (2 a^2\right ) \int \frac {\tanh ^{-1}(a x)^2}{x} \, dx\right )+a^4 \int x \tanh ^{-1}(a x)^2 \, dx+\int \frac {\tanh ^{-1}(a x)^2}{x^3} \, dx\\ &=-\frac {\tanh ^{-1}(a x)^2}{2 x^2}+\frac {1}{2} a^4 x^2 \tanh ^{-1}(a x)^2-4 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )+a \int \frac {\tanh ^{-1}(a x)}{x^2 \left (1-a^2 x^2\right )} \, dx+\left (8 a^3\right ) \int \frac {\tanh ^{-1}(a x) \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )}{1-a^2 x^2} \, dx-a^5 \int \frac {x^2 \tanh ^{-1}(a x)}{1-a^2 x^2} \, dx\\ &=-\frac {\tanh ^{-1}(a x)^2}{2 x^2}+\frac {1}{2} a^4 x^2 \tanh ^{-1}(a x)^2-4 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )+a \int \frac {\tanh ^{-1}(a x)}{x^2} \, dx+a^3 \int \tanh ^{-1}(a x) \, dx-\left (4 a^3\right ) \int \frac {\tanh ^{-1}(a x) \log \left (\frac {2}{1-a x}\right )}{1-a^2 x^2} \, dx+\left (4 a^3\right ) \int \frac {\tanh ^{-1}(a x) \log \left (2-\frac {2}{1-a x}\right )}{1-a^2 x^2} \, dx\\ &=-\frac {a \tanh ^{-1}(a x)}{x}+a^3 x \tanh ^{-1}(a x)-\frac {\tanh ^{-1}(a x)^2}{2 x^2}+\frac {1}{2} a^4 x^2 \tanh ^{-1}(a x)^2-4 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )+2 a^2 \tanh ^{-1}(a x) \text {Li}_2\left (1-\frac {2}{1-a x}\right )-2 a^2 \tanh ^{-1}(a x) \text {Li}_2\left (-1+\frac {2}{1-a x}\right )+a^2 \int \frac {1}{x \left (1-a^2 x^2\right )} \, dx-\left (2 a^3\right ) \int \frac {\text {Li}_2\left (1-\frac {2}{1-a x}\right )}{1-a^2 x^2} \, dx+\left (2 a^3\right ) \int \frac {\text {Li}_2\left (-1+\frac {2}{1-a x}\right )}{1-a^2 x^2} \, dx-a^4 \int \frac {x}{1-a^2 x^2} \, dx\\ &=-\frac {a \tanh ^{-1}(a x)}{x}+a^3 x \tanh ^{-1}(a x)-\frac {\tanh ^{-1}(a x)^2}{2 x^2}+\frac {1}{2} a^4 x^2 \tanh ^{-1}(a x)^2-4 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )+\frac {1}{2} a^2 \log \left (1-a^2 x^2\right )+2 a^2 \tanh ^{-1}(a x) \text {Li}_2\left (1-\frac {2}{1-a x}\right )-2 a^2 \tanh ^{-1}(a x) \text {Li}_2\left (-1+\frac {2}{1-a x}\right )-a^2 \text {Li}_3\left (1-\frac {2}{1-a x}\right )+a^2 \text {Li}_3\left (-1+\frac {2}{1-a x}\right )+\frac {1}{2} a^2 \text {Subst}\left (\int \frac {1}{x \left (1-a^2 x\right )} \, dx,x,x^2\right )\\ &=-\frac {a \tanh ^{-1}(a x)}{x}+a^3 x \tanh ^{-1}(a x)-\frac {\tanh ^{-1}(a x)^2}{2 x^2}+\frac {1}{2} a^4 x^2 \tanh ^{-1}(a x)^2-4 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )+\frac {1}{2} a^2 \log \left (1-a^2 x^2\right )+2 a^2 \tanh ^{-1}(a x) \text {Li}_2\left (1-\frac {2}{1-a x}\right )-2 a^2 \tanh ^{-1}(a x) \text {Li}_2\left (-1+\frac {2}{1-a x}\right )-a^2 \text {Li}_3\left (1-\frac {2}{1-a x}\right )+a^2 \text {Li}_3\left (-1+\frac {2}{1-a x}\right )+\frac {1}{2} a^2 \text {Subst}\left (\int \frac {1}{x} \, dx,x,x^2\right )+\frac {1}{2} a^4 \text {Subst}\left (\int \frac {1}{1-a^2 x} \, dx,x,x^2\right )\\ &=-\frac {a \tanh ^{-1}(a x)}{x}+a^3 x \tanh ^{-1}(a x)-\frac {\tanh ^{-1}(a x)^2}{2 x^2}+\frac {1}{2} a^4 x^2 \tanh ^{-1}(a x)^2-4 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )+a^2 \log (x)+2 a^2 \tanh ^{-1}(a x) \text {Li}_2\left (1-\frac {2}{1-a x}\right )-2 a^2 \tanh ^{-1}(a x) \text {Li}_2\left (-1+\frac {2}{1-a x}\right )-a^2 \text {Li}_3\left (1-\frac {2}{1-a x}\right )+a^2 \text {Li}_3\left (-1+\frac {2}{1-a x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 183, normalized size = 1.13 \begin {gather*} -\frac {a \tanh ^{-1}(a x)}{x}+a^3 x \tanh ^{-1}(a x)+\frac {1}{2} a^2 \left (-1+a^2 x^2\right ) \tanh ^{-1}(a x)^2+\frac {\left (-1+a^2 x^2\right ) \tanh ^{-1}(a x)^2}{2 x^2}-4 a^2 \tanh ^{-1}(a x)^2 \tanh ^{-1}\left (1-\frac {2}{1-a x}\right )+a^2 \log (x)-2 a^2 \tanh ^{-1}(a x) \text {PolyLog}\left (2,\frac {-1-a x}{-1+a x}\right )+2 a^2 \tanh ^{-1}(a x) \text {PolyLog}\left (2,\frac {1+a x}{-1+a x}\right )+a^2 \text {PolyLog}\left (3,\frac {-1-a x}{-1+a x}\right )-a^2 \text {PolyLog}\left (3,\frac {1+a x}{-1+a x}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((1 - a^2*x^2)^2*ArcTanh[a*x]^2)/x^3,x]

[Out]

-((a*ArcTanh[a*x])/x) + a^3*x*ArcTanh[a*x] + (a^2*(-1 + a^2*x^2)*ArcTanh[a*x]^2)/2 + ((-1 + a^2*x^2)*ArcTanh[a
*x]^2)/(2*x^2) - 4*a^2*ArcTanh[a*x]^2*ArcTanh[1 - 2/(1 - a*x)] + a^2*Log[x] - 2*a^2*ArcTanh[a*x]*PolyLog[2, (-
1 - a*x)/(-1 + a*x)] + 2*a^2*ArcTanh[a*x]*PolyLog[2, (1 + a*x)/(-1 + a*x)] + a^2*PolyLog[3, (-1 - a*x)/(-1 + a
*x)] - a^2*PolyLog[3, (1 + a*x)/(-1 + a*x)]

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 21.69, size = 779, normalized size = 4.81 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a^2*x^2+1)^2*arctanh(a*x)^2/x^3,x,method=_RETURNVERBOSE)

[Out]

a^2*(1/2*a^2*x^2*arctanh(a*x)^2-2*arctanh(a*x)^2*ln(a*x)-1/2*arctanh(a*x)^2/a^2/x^2+2*arctanh(a*x)^2*ln((a*x+1
)^2/(-a^2*x^2+1)-1)-2*arctanh(a*x)^2*ln(1-(a*x+1)/(-a^2*x^2+1)^(1/2))-4*arctanh(a*x)*polylog(2,(a*x+1)/(-a^2*x
^2+1)^(1/2))+4*polylog(3,(a*x+1)/(-a^2*x^2+1)^(1/2))-2*arctanh(a*x)^2*ln(1+(a*x+1)/(-a^2*x^2+1)^(1/2))-4*arcta
nh(a*x)*polylog(2,-(a*x+1)/(-a^2*x^2+1)^(1/2))+4*polylog(3,-(a*x+1)/(-a^2*x^2+1)^(1/2))+2*arctanh(a*x)*polylog
(2,-(a*x+1)^2/(-a^2*x^2+1))-polylog(3,-(a*x+1)^2/(-a^2*x^2+1))+I*Pi*csgn(I*((a*x+1)^2/(-a^2*x^2+1)-1))*csgn(I*
((a*x+1)^2/(-a^2*x^2+1)-1)/((a*x+1)^2/(-a^2*x^2+1)+1))^2*arctanh(a*x)^2+ln((a*x+1)/(-a^2*x^2+1)^(1/2)-1)+ln(1+
(a*x+1)/(-a^2*x^2+1)^(1/2))-ln((a*x+1)^2/(-a^2*x^2+1)+1)-1/2*arctanh(a*x)*((-a^2*x^2+1)^(1/2)+a*x+1)/a/x+(a*x+
1)*arctanh(a*x)-1/2*(a*x+1-(-a^2*x^2+1)^(1/2))/a/x*arctanh(a*x)+I*Pi*csgn(I/((a*x+1)^2/(-a^2*x^2+1)+1))*csgn(I
*((a*x+1)^2/(-a^2*x^2+1)-1)/((a*x+1)^2/(-a^2*x^2+1)+1))^2*arctanh(a*x)^2-I*arctanh(a*x)^2*Pi*csgn(I*((a*x+1)^2
/(-a^2*x^2+1)-1)/((a*x+1)^2/(-a^2*x^2+1)+1))^3-I*arctanh(a*x)^2*Pi*csgn(I*((a*x+1)^2/(-a^2*x^2+1)-1))*csgn(I/(
(a*x+1)^2/(-a^2*x^2+1)+1))*csgn(I*((a*x+1)^2/(-a^2*x^2+1)-1)/((a*x+1)^2/(-a^2*x^2+1)+1)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^2*arctanh(a*x)^2/x^3,x, algorithm="maxima")

[Out]

-1/16*(2*x^2*log(-a*x + 1) - a*((a*x^2 + 2*x)/a^2 + 2*log(a*x - 1)/a^3))*a^4 - 1/2*a^4*integrate(x*log(a*x + 1
)*log(-a*x + 1), x) + 1/4*a^3*integrate(a*x*log(a*x + 1)^2, x) + 1/4*a^3*integrate(log(a*x + 1)^2/(a^3*x^3), x
) + 1/4*(a*x - (a*x - 1)*log(-a*x + 1) - 1)*a^2 - 1/2*a^2*integrate(log(a*x + 1)^2/x, x) + a^2*integrate(log(a
*x + 1)*log(-a*x + 1)/x, x) - 1/4*a^2*integrate(log(-a*x + 1)/x, x) - 1/4*(a*(log(a*x - 1) - log(x)) - log(-a*
x + 1)/x)*a + 1/8*(a^4*x^4 - 1)*log(-a*x + 1)^2/x^2 - 1/2*integrate(log(a*x + 1)*log(-a*x + 1)/x^3, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^2*arctanh(a*x)^2/x^3,x, algorithm="fricas")

[Out]

integral((a^4*x^4 - 2*a^2*x^2 + 1)*arctanh(a*x)^2/x^3, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a x - 1\right )^{2} \left (a x + 1\right )^{2} \operatorname {atanh}^{2}{\left (a x \right )}}{x^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a**2*x**2+1)**2*atanh(a*x)**2/x**3,x)

[Out]

Integral((a*x - 1)**2*(a*x + 1)**2*atanh(a*x)**2/x**3, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^2*arctanh(a*x)^2/x^3,x, algorithm="giac")

[Out]

integrate((a^2*x^2 - 1)^2*arctanh(a*x)^2/x^3, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\mathrm {atanh}\left (a\,x\right )}^2\,{\left (a^2\,x^2-1\right )}^2}{x^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((atanh(a*x)^2*(a^2*x^2 - 1)^2)/x^3,x)

[Out]

int((atanh(a*x)^2*(a^2*x^2 - 1)^2)/x^3, x)

________________________________________________________________________________________